
M E E M O O : H A C K A B L E W E B A P P F R A M E W O R K

forrest oliphant

Media Lab Helsinki
Aalto University

March 2012 – version 1.0

!

ABSTRACT
Author Year of publication

Department

Degree programme

Title

Type of work Language Number of pages

Abstract

Keywords

!

Michael Forrest Dysart Oliphant 2012

Media Master of Arts, New Media

Meemoo: Hackable Web App Framework

Project and performance English 60

Meemoo is a modular web app framework with a focus on design for
hackability. People can create and modify new media tools with this
framework in a web browser without writing code. Tools are made by
wiring together pre-built modules. Modules are created with web
standards.

This thesis consists of a software project and a performance. The
software project is Meemoo[1], which is a framework for hackable web
apps. The performance consisted of live animation[2] made with the
Meemoo framework.

The main objectives of this project:

• Design a modular dataflow visual programming framework using web
 technologies.

• The framework should afford non-coders the ability to modify creative
 web apps by configuring wires that represent how modules communicate.

• Apps created with the framework should have source code that is easy
 to read and share.

• Web coders should be able to extend the framework by creating modules
 using web standards. There should be a simple syntax to define the
 inputs and outputs of a module.

[1] Project page, demos, and source code: http://meemoo.org/
[2] Performance documentation: http://youtu.be/T_tCyYGLWKM

web, html, javascript, framework, design, modular, hackable, open source

acknowledgements

Helsinki, March 23, 2012.
Two years ago I was a beach bum in Dunedin, New Zealand, happy

but thinking about the next adventure. Knowing nothing about Fin-
land, I applied to Media Lab Helsinki. I answered the “where do you
see yourself in five years” question by saying “I hope to be a mad sci-
entist.” Cheeky, but honest. Two years later – thanks to the support,
resources, and room to explore provided by this program – I’m well
on my way.

Thanks to Teemu Leinonen for finding a position for me to do this
research in LeGroup, and for reading drafts. He and Anna Keune
piled my desk with literature, giving me a jumpstart on getting per-
spective on my project within the context of people with similar goals
through the years.

Thanks to Katian Witchger, Nuno Correia, and Tarmo Toikkanen
for reading early versions of this manuscript and pointing me in in-
teresting directions.

Jyri Pieniniemi is my Meemoo brain trust. He provided the original
seed of the idea, and has bounced ideas with me for the past year. He
also made the awesome illustration on the cover.

Thanks to Pascal Finette, Diane Bisgeier, and Mozilla WebFWD for
taking on me and my project, showing me how the überwebgeeks
throw down in Silicon Valley, and fighting for the open web.

My family and extended family around the John C. Campbell Folk
School gave me a passion for making things and life-long learning.

Aino, here’s to a lifetime of tech and textile collaborations.
Tiniest but not least is Ilo, who came into the world a month ago.

Thanks so much for the snuggle breaks. You inspire me.

i

C O N T E N T S

1 introduction 1
2 context 5

2.1 Hackers and Hackability 5
2.1.1 iOS 6

2.2 Metamedium 7
2.3 Tools 8

2.3.1 Direct manipulation 8
2.4 Programming for children (and other artists) 9

2.4.1 Logo (1967) 9
2.4.2 Smalltalk (1972) 10
2.4.3 Scratch (2006) 10
2.4.4 Processing (2001) 11

2.5 Visual programming languages 13
2.5.1 GRAIL (1969) 13
2.5.2 Audio/visual environments 13
2.5.3 On the web 14

2.6 Free Software Movement 15
2.7 Maker Movement 16
2.8 Plugin architecture 17

2.8.1 jQuery 17
2.8.2 Arduino 17

2.9 The Internet 18
2.9.1 Participatory media online 18

3 previous work and motivation 21
3.1 Early experiences 21
3.2 Voice Synthesizer (2002), Flash 22
3.3 Megacam (2010), Flash 23
3.4 Opera projection mapping (2011), Quartz Composer 23
3.5 Web Video Remixer (2011), HTML 25

4 development 27
4.1 Mozilla WebFWD 27
4.2 Software design for hackability 28

4.2.1 Common communication library for modules 28
4.2.2 Readable, sharable app source code 28

4.3 Usability design for hackability 29
4.3.1 Direct manipulation 29
4.3.2 What is abstracted 30

4.4 Graphic design 30
4.5 Persona and scenario-based design 30
4.6 Usability testing and feedback 32

5 apps 35
5.1 Example apps 35
5.2 Economic system modeled with Meemoo 35
5.3 Live animation visuals for dance party 38

6 future development 41

iii

6.1 Community for sharing apps 41
6.1.1 Socket communication 42

6.2 Touchscreen support 42
6.3 Code editing 42
6.4 Twenty Apps to Build With Meemoo 43

7 conclusions 47
Bibliography 49

Appendix 53
a the pitch 55
b persona profiles and scenarios 57

b.1 Cate the Creator 57
b.2 Henry the Hacker 57
b.3 Molly the Modder 58

c code samples 59
c.1 Defining Inputs and Outputs (JavaScript) 59
c.2 Meemoo App Source Code (JSON) 60

iv

1
I N T R O D U C T I O N

The power to understand, modify, and create new media tools
should not be restricted to those with a freakish knack for manip-
ulating abstract symbols.

— Paraphrased from Bret Victor’s “Kill Math” (2011)

The people that created the vision of the personal computer in the late
1960s wanted everybody to be able to create their own digital tools
(see 2.2 on page 7). Traditional computer programming has a steep
learning curve, so most people are satisfied with the tools that come
with the computer or are offered as services online. The barrier to
entry to learning traditional programming involves setting up a pro-
gramming environment, learning different systems for creating pre-
sentation and logic, and learning different programming and markup
languages and syntaxes.

People that overcome these barriers to entry are able to create soft-
ware tools for themselves and others. These tools allow us to under-
stand and modify our environment and culture. People that create
tools that are open to modification afford other people the ability to
learn from their tools and to build new tools on the old.

I wanted to combine my programming experience with visual pro-
gramming and creative web applications to make a framework for my
own web experiments. I decided to make something with creative
value to a wider audience by considering audiences for the frame-
work other than myself – programmers and non-programmers alike.
Such a tool could invite people without coding experience to modify
software tools and create their own. To this end, I designed a web-
based visual programming framework called Meemoo.

The main objectives of this project:

• Design a modular dataflow visual programming framework us-
ing web technologies.

• The framework should afford non-coders the ability to modify
creative web apps by configuring wires that represent how mod-
ules communicate.

• Apps created with the framework should have source code that
is easy to read and share.

• Web coders should be able to extend the framework by creating
modules using web standards. There should be a simple syntax
to define the inputs and outputs of a module.

Within this framework, an app is a collection of modules and the wires
that connect them. A module is a web page that can live anywhere on-
line, and use any web technology. This web page includes JavaScript

1

2 introduction

Figure 1: Meemoo screen-shot (March 2012)

that defines the module’s inputs and outputs: what data is accepted,
how the data is processed, and what kind of data will be sent. The
wires define where each module sends data. The source code of the
app that defines an its layout, routing, and state can be saved and
shared with a small amount of text.

Meemoo apps run in the web browser, so they will be able to
run the same on PCs, smartphones, tablet computers, and soon TVs.
Using, modifying, and making new apps are all done in the same
browser interface, so no external developer tools are needed.

Meemoo apps are programmed by connecting modules with wires
(Figure 1), putting programming within reach of non-coders.

In the course of this thesis I will refer to programming and coding
as distinct skills. Learning to program is a process of learning to
manipulate logical structures. Learning to code puts those structures
into a linear-textual format that computers can parse. Different pro-
grammable systems emphasize and abstract these aspects differently.
I will also use the term “people” to avoid the terms “user” and “de-
veloper,” as I would like to make this distinction moot in the context
of the project.

So far I have focused module development on realtime animation
tools, as this makes it simple to understand and engage creatively
with the concept. It is not limited to animation though; any app or
system that can be described by a dataflow graph can be made into a
Meemoo app.

I did not start making Meemoo as an educational tool, but I have
since been influenced by software projects inspired by Constructionist
learning theory: Logo, Smalltalk, and Scratch. As I have read texts on
Constructionism, I have seen parallels to my own experiences as a
learner. I think that Meemoo has the potential to be a good tool for
“learning by making.”

introduction 3

This thesis consists of a software project and a performance. The
software project is Meemoo1, which is a framework for hackable web
apps. The performance consisted of live animation2 made with the
Meemoo framework (see 5.3 on page 38).

1 Demos and source code available at http://meemoo.org/
2 Live animation performance documentation: http://youtu.be/T_tCyYGLWKM

http://meemoo.org/
http://youtu.be/T_tCyYGLWKM

2
C O N T E X T

Meemoo has many direct and indirect influences and precedents in
the way that it has been designed.

2.1 hackers and hackability

The Jargon File, a reference and glossary started in 1973, gives eight
definitions for “hacker.”

hacker: n. [originally, someone who makes furniture with
an axe]

1. A person who enjoys exploring the details of programmable
systems and how to stretch their capabilities, as opposed
to most users, who prefer to learn only the minimum nec-
essary. RFC1392, the Internet Users’ Glossary, usefully am-
plifies this as: A person who delights in having an intimate
understanding of the internal workings of a system, com-
puters and computer networks in particular.

...

8. [deprecated] A malicious meddler who tries to discover
sensitive information by poking around. Hence password
hacker, network hacker. The correct term for this sense is
cracker.

(Raymond, 2003)

The eighth definition, despite being deprecated in the Jargon File,
has become the popular understanding of “hacker.” For the purpose
of this thesis and project I will use and promote the first definition.
In this context, “hackability” refers to design that encourages under- Hackability: n.

design that
encourages
understanding and
modification.

standing of the workings of a system, in a addition to the ability to
modify said system.

It might be a lost cause to try to reclaim this term from its common
cultural understanding. The Maker Movement, which also places value
in understanding and modifying systems and things, does not have
such negative baggage with their moniker, as “make” and “maker”
seem like more constructive terms. Hacking is related to tinkering
and bricolage, but those terms do not seem as concrete. Although it
is not perfect, I will stick to the term “hackability,” as I think that it en-
compasses the spirit that I want to promote with regards to software.
There are other projects that are embracing this meaning as well, such
as Hackity Hack!1 and Mozilla Hackasaurus2, both aimed at getting
children to explore coding.

1 Hackity Hack!: http://hackety.com/
2 Mozilla Hackasaurus: http://hackasaurus.org/

5

http://hackety.com/
http://hackasaurus.org/

6 context

Pekka Himanen describes “The Hacker Ethic” as a work ethic based
on passionate curiosity. This drive to make and tinker is not limited to
high tech systems; it manifests itself in other interests such as carpen-
try or textile craft. It stands in contrast to Max Weber’s “Protestant
work ethic,” which is based on a sense of duty and responsibility.
(Himanen, 2001, p. 3-8)

Designing for hackability implies respect. The designer of a hack-
able thing acknowledges that they cannot imagine every potential
use, so they enable people to modify it to their will and connect it
to other things. This quality can apply to software, physical artifacts,
and services. For a physical artifact to be hackable, it should follow
the Maker’s Bill of Rights (Figure 9 on page 16). For a service to be
hackable, it should make its data freely available with an application
programming interface.

For software to be hackable the source code should be available
under a free license (see 2.6). While this enables other people with
coding skills to modify a software project, I would like to expand the
affordances of software hackability to non-coders.

2.1.1 iOS

Figure 2: App Icon

I saw the rise of touchscreen devices like the iPhone and iPad as
a step backwards for participatory media. As originally marketed,
these devices were designed primarily for media consumption (Jobs,
2007). The only media production capabilities afforded by these de-
vices was taking and sharing photos. When Apple later opened up
the App Store they took a timid step towards hackability by allowing
third party developers to create apps that extend the functionality of
the device. I say “timid” because only developers that pay for the
privilege can write apps for these devices, and only apps that pass an
opaque curation process are allowed in the App Store (Gruber, 2009).

Because of this closed ecosystem and technical limitations, the de-
sign of apps for iOS tend to have low to no hackability. In general, an
app is designed to do one thing. The designer decides what the app
does, how it communicates, where things can be shared. The “user”
then uses the app. The demarcation is well-defined between the de-
signer and user roles.

The standard icon for an app looks like a shiny glass object (Fig-
ure 2), which mirrors the aesthetics of the device itself. It symbolizes
something highly designed and polished, not to be opened. For both
the device and the apps that run on it, the design implies “no user
serviceable parts inside.”

There are some apps designed for media creation. Garageband3

and Photoshop Touch4 for iOS are tools for music creation and image
manipulation designed for touchscreens. These tools are each highly
designed for one kind of media creation. These apps can only com-
municate with services that the designers have chosen.

3 Garageband: http://www.apple.com/ipad/from-the-app-store/apps-by-
apple/garageband.html

4 Photoshop Touch: http://www.adobe.com/products/photoshop-touch.html

http://www.apple.com/ipad/from-the-app-store/apps-by-apple/garageband.html
http://www.apple.com/ipad/from-the-app-store/apps-by-apple/garageband.html
http://www.adobe.com/products/photoshop-touch.html

2.2 metamedium 7

There are some apps that do allow some programming-based hack-
ability: apps that are code editors. These include Codea5 by Two Lives
Left for Lua, Processing.js Mini-IDE6 by Brian Jepson, and GLSL Stu-
dio7 by kode80 for OpenGL shaders. These three apps are text-based
development environments that deal with the affordances and con-
straints of writing code on touchscreen devices in different ways. For
example, Codea has touch-optimized number slider and color picker
widgets embedded in the code to manipulate variables.

However, without an external keyboard, any kind of extended typ-
ing on a touchscreen device is a difficult task. It is also against Ap-
ple’s regulations to load external scripts in native apps, which makes
it hard to share code. Code that you write in these apps can only run
in the “walled garden” of the app itself.

A different kind of programming might be better suited for touch-
screen devices. Two potential alternatives to text-based programming
are codeblocks (see 2.4.3 on page 10) and modular dataflow program-
ming, like Meemoo.

Apple’s iOS devices are powerful computers. It should be easier for
people to hack and program their own tools.

2.2 metamedium

The Dynabook was a concept design developed at Xerox Palo Alto
Research Center in 1968. The concept envisioned the personal com-
puter more or less as we know it today. Alan Kay outlines some of
the goals and philosophical influences of the project:

“Putting all this together, we want an apparently free en-
vironment in which exploration causes desired sequences
to happen (Montessori); one that allows kinesthetic, iconic,
and symbolic learning – ’doing with images makes sym-
bols’ (Piaget & Bruner); the user is never trapped in a
mode (GRAIL); the magic is embedded in the familiar (Ne-
groponte); and which acts as a magnifying mirror for the
user’s own intelligence (Coleridge).” (Kay, 1996, p. 33)

Alan Kay and Adele Goldberg coined the term “metamedium” to
describe their vision of the computer as a medium that can be all
other media. Unlike broadcast media which is passively consumed,
computer media can also be participatory and active. This means that
people can create and consume media with the same tool. (Kay and
Goldberg, 1977, p. 393-394)

“I suggest that Kay and others aimed to create a partic-
ular kind of new media – rather than merely simulating
the appearances of old ones. These new media use already

5 Codea: http://twolivesleft.com/Codea/
6 Processing.js Mini-IDE: http://www.jepstone.net/blog/2010/04/16/processing-js-

mini-ide-for-ipad-iphone-android-chrome/
7 GLSL Studio: http://glslstudio.com/

http://twolivesleft.com/Codea/
http://www.jepstone.net/blog/2010/04/16/processing-js-mini-ide-for-ipad-iphone-android-chrome/
http://www.jepstone.net/blog/2010/04/16/processing-js-mini-ide-for-ipad-iphone-android-chrome/
http://glslstudio.com/

8 context

existing representational formats as their building blocks,
while adding many new previously nonexistent proper-
ties. At the same time, as envisioned by Kay, these media
are expandable – that is, users themselves should be able
to easily add new properties, as well as to invent new me-
dia.” (Manovich, 2008, p. 23)

It is common to consume and create media on the computer with
tools made by other people. It should be easier to create, share, and
modify our own tools.

2.3 tools

“The ability to ’read’ a medium means that you can ac-
cess materials and tools generated by others. The ability
to ’write’ a medium means you can generate materials
and tools for others. You must have both to be literate.”
(Kay, 1990, p. 193)

Many digital tools have precedents in avant-garde art practices. In
1959 Brion Gysin manually “hacked” text with scissors, recombining
the fragments to see what might be found (Burroughs, 1961). Word
processing software can be seen as a tool that affords greater hacka-
bility to text. In 1972 DJ Kool Herc manually mixed two records to
give partygoers a longer percussive break for dancing (Hermes, 2006).
Non-linear audio editors afford greater hackability to music, which
has lead to different kinds of remixing. Although the art practices did
not directly lead to the software tool development, both come from
the same impulse to combine and recontextualize the world around
us. (Manovich, 2003, p. 13)

These digital tools are designed to afford hackability to one par-
ticular kind of media. Meemoo is designed to afford hackability to
the tools themselves. Meemoo is a toolmaker that makes it easier for
people to create and modify their own digital tools, and therefore to
invent new media.

2.3.1 Direct manipulation

Bret Victor gave a talk called “Inventing on Principle” at the 2012
Canadian University Software Engineering Conference in which he
demonstrated an experimental code editor (Victor, 2012). His edi-
tor shows the output of the code in real-time, without needing to
change windows, compile, or save and refresh. Any number or color
in the source code opens a slider or color picker, which immediately
changes the visual output (Figure 3). As somebody with experience
coding visual applications in JavaScript, Flash, and Processing, this
demonstration was like seeing the light. Suddenly I could see that
each mode change in my normal workflow is a waste of time and
mental energy – the need to save or recompile, change modes, and re-
fresh between changing code and seeing the result. People that make

2.4 programming for children (and other artists) 9

(a) (b)

Figure 3: Bret Victor’s direct manipulation of code

code editors should consider including this kind of direct manipula-
tion.

2.4 programming for children (and other artists)

While Meemoo was not designed specifically for children, it shares
with these projects the goal of lowering the barrier to entry to pro-
gramming.

2.4.1 Logo (1967)

Figure 4: Logo tur-
tle drawing
a star

Seymour Papert studied under Jean Piaget, an educational philoso-
pher who outlined stages of mental development into a model of
learning called “constructivism.” The basic idea is that people con-
struct knowledge structures through experiences, as opposed to be-
ing taught the structures. Papert added to this model, proposing that
learning happens best when “the learner is consciously engaged in
constructing a public entity, whether it’s a sand castle on the beach
or a theory of the universe” (Papert and Harel, 1991, p. 1). This idea
is called “constructionism.”

Papert realized that the computer, as metamedium, could be a pow-
erful learning tool if students were able to create their own programs.
Logo was designed as a simplified programming language for explor-
ing mathematics. The first tests of Logo in the classroom predated the
personal computer, sending code from a teletype terminal in the class-
room to a remote mainframe computer (Papert and Harel, 1991, p. 6).

As computers became smaller and more common in classrooms,
the signature Logo turtle was added to the system. This was a graph-
ical representation of a turtle that would draw lines on the screen
based on the instructions given by the child. For example, ”repeat
5 [fd 100 rt 144]” tells the turtle “do this five times: walk
forward 100 units, then turn 144 degrees to the right.” This small pro-
gram draws a star (Figure 4). By making the commands relative to
the current position of the turtle, the language is easier to learn than

10 context

a graphical drawing system based on Cartesian coordinates. (Papert,
1993, p. 171)

2.4.2 Smalltalk (1972)

A fundamental requirement for the DynaBook research project was to
create a system that could be programmed by the user. Kay invented
Smalltalk and object-oriented programming for the Dynabook proto-
type system to lower the barrier to entry for coding. He was inspired
by seeing children program with Logo, but wanted them to be able to
program more complex tools. “Procedural turtle graphics just wasn’t
it.” (Kay, 1996, p. 26) Object-oriented programming splits code into
logical classes that define the data for the object and the methods that
access or modify that data. By splitting the code like this it becomes
easier to organize and navigate more complex projects.

In tests some children programmed their own tools, like a twelve-
year-old girl’s painting application and a fifteen-year-old boy’s circuit
design application. Kay later referred to these impressive results as
“early success syndrome.” “The successes were real, but they weren’t
as general as we thought.” Kay later decided that learning to program
might be as difficult as learning to write, and take years to build up
the mental models necessary to do it correctly. (Kay, 1996, p. 26)

2.4.3 Scratch (2006)

Text-based programming languages have requirements for syntax and
indentation that if not followed perfectly will result in programs that
do not run as expected (or at all). This can be frustrating for beginners
and experienced coders alike. Most of my programming errors are
missing semicolons or mismatched brackets. The creators of Scratch
designed a coding system that works around syntax and the frustra-
tion of syntax errors.

Scratch uses drag-and-drop “code blocks” instead of a text-based
syntax, which makes coding less error-prone for beginners. These
code blocks snap together only in ways that make syntactic sense
(Figure 5a). “Control structures (like forever and repeat) are C-
shaped to suggest that blocks should be placed inside them. Blocks
that output values are shaped according to the types of values they
return: ovals for numbers and hexagons for Booleans. Conditional
blocks (like if and repeat-until) have hexagon-shaped voids, in-
dicating a Boolean is required.” (Resnick et al., 2009, p. 63)

Although creating a script with code blocks is more like snapping
Legos together than writing code, it is still coding. The shape of the
control structures is a direct metaphor to how code syntax works, and
more visually obvious than brackets or indentation. I imagine these
logical structures are transferable to textual coding.

I feel a little cheated to not have had Scratch when I was a child. I
would have loved it.

2.4 programming for children (and other artists) 11

I tend to program something with the Fibonacci sequence with ev-
ery new language that I try. To test Scratch I made an absurdist an-
imation of a cat running into walls and reciting Fibonacci numbers8

(Figure 5). I did not have this final output planned from the start. The
available blocks influenced the direction of my exploration. For ex-
ample, the last change was adding the drum sound when I saw that
it was as easy as adding one more block to the script. Making some-
thing with comparable collision detection, color cycling, and audio
triggering in Flash or Processing would have taken much longer.

This was my first Scratch project, and from launching the environ-
ment for the first time it only took about thirty minutes to snap it to-
gether. Granted, I am an experienced coder, but I try new languages
and coding systems on occasion, and Scratch was by far the fastest
and easiest to create something interesting. I look forward to playing
with it more.

In Scratch each element on the screen is a “sprite” with its own vari-
ables and scripts. This makes Scratch compositions object-oriented by
default, as it would be hard to do it any other way.

Code can be changed as the project is running, and the results
change immediately9. This brings direct manipulation to coding, in
that changes in the code can be seen in real-time, without recom-
piling or refreshing. This is an uncommon feature in programming
environments. I imagine it is helpful for beginning programmers.

2.4.4 Processing (2001)

Processing was designed to teach programming fundamentals with a
focus on visuals, motion, and interaction. The creators of Processing
wanted it to extend the computer as a “medium for expression.” (Reas
and Fry, 2007, p. 2-3) Processing was ported to JavaScript in 2008
(Resig, 2008).

“Software holds a unique position among artistic media
because of its ability to produce dynamic forms, process
gestures, define behavior, simulate natural systems, and
integrate other media including sound, image, and text.”
(Reas and Fry, 2007, p. 1)

Processing is a textual programming language and environment based
on Java. After using Scratch, I am surprised that Processing and Flash
were the first languages introduced to students at Media Lab Helsinki.
I think that Scratch is a better first introduction to coding, because it
abstracts the syntax away and lets the beginner focus on learning
the logical structures of programming. I would recommend anybody
teaching programming to beginners to start with Scratch, at least for
the first lesson.

8 Fibonacci Cat! by the author: http://scratch.mit.edu/projects/forresto/2398409
9 This works best with some kinds of code edits, like changing variables or colors.

Moving larger blocks sometimes requires restarting the project.

http://scratch.mit.edu/projects/forresto/2398409

12 context

(a) Script (b) Output

Figure 5: Fibonacci Cat! Scratch program by the author

2.5 visual programming languages 13

Figure 6: GRAIL

2.5 visual programming languages

Meemoo is a kind of dataflow visual programming environment. This
means that programming is done by connecting modules with wires.
The modules can hold and process arbitrary data: text, audio, images.
The wires define and visualize how data moves from module to mod-
ule.

2.5.1 GRAIL (1969)

GRAIL (GRAphical Input Language) was an early experimental data-
flow environment developed by the Rand Corporation from 1967 to
1969 (Figure 6). This interface was driven by a graphics tablet, so
everything could be done without a keyboard. Nodes were added by
drawing a box in place. Edges were drawn from node to node. Labels
were added to the nodes with handwriting recognition. Edges were
disconnected by scribbling over them. (Ellis et al., 1969, p. 3)

Kay credited the project with directly inspiring some of the user
interface elements in the DynaBook system, like windows that were
resizable by dragging the corner. This feature was later adopted by
Macintosh and later Windows operating systems. “It was direct ma-
nipulation, it was analogical, it was modeless, it was beautiful.” (Kay,
1996, p. 10)

2.5.2 Audio/visual environments

Visual programming is used most in the domain of real-time audio
processing and synthesis (Pure Data and Max/MSP), generative ani-
mation and visual effects (Quartz Composer and vvvv), and 3D mate-
rial and shading design (Softimage Interactive Creative Environment)
(Morrison, 2010).

This is probably due to the fact that people involved in audio/vi-
sual production tend to be comfortable with connecting equipment
with cables, so it is easier to learn a system based on this metaphor

14 context

Figure 7: Yahoo! Pipes layout that watches eBay for items with a search term
and price range

than one based on linear-textual coding. Also, these systems tend to
provide immediate feedback when modifying their layout.

2.5.3 On the web

One precedent for web-based visual programming is Yahoo! Pipes
(Figure 7). This web application was released in 2007 with the goal of
enabling people to “assemble personalized information sources out
of existing Web services and data feeds” (Sadri et al., 2007). Pipes is
designed for asynchronous data processing, which makes it good for
tasks such as setting up alerts based on searching a service.

In contrast to this system for asynchronous data processing, Meemoo
is designed to make real-time interactive audio/visual applications.
The open modular design of Meemoo allows its capabilities to keep
pace with the capabilities of web browsers.

ThreeNodes.js (Figure 8) is a visual programming environment for
web-standards-based 3D graphics. It was released in September of
2011. The focus is on building, shading, and lighting a 3D environ-
ment. Once you program the scene visually you can export the result-
ing JavaScript code.

ThreeNodes.js is much more specific in its design and output than
Meemoo. In the future I will be working with this project to make
some of its modules work within Meemoo.

2.6 free software movement 15

Figure 8: ThreeNodes.js

2.6 free software movement

Richard Stallman wrote the “The GNU Manifesto” in 1985 at the start
of the GNU project. In it he explains that software should be free,
meaning that the source should be available to examine and modify.
He framed his argument in terms of personal honor, “I consider that
the Golden Rule requires that if I like a program I must share it with
other people who like it.” He also advanced the practical argument
that free software would prevent “wasteful duplication” of program-
ming effort which could instead be used “advancing the state of the
art.” (Stallman, 1985)

In my programming experience, this has proven to be the main
benefit of free software. Meemoo relies heavily on two JavaScript li-
braries that are free software, jQuery10 and Backbone.js11. Both of
these libraries are written by communities of people who are collec-
tively much better at JavaScript than me. They design these libraries
to be helpful for other programmers, and give them away under open-
source licenses.

JQuery seeks to abstract away browser differences, making it much
easier to write code that runs the same on different browsers. Back-
bone.js provides structure for the data models, views, and collections
that are required to make a maintainable object-oriented web appli-
cation. This makes it easier to keep track of the data structures and
state of the apps, modules, and wires in Meemoo.

I can confidently say that without these libraries Meemoo would
not exist. My programming knowledge is built on viewing and us-
ing source code made by other people. Meemoo is built on libraries
made by other people. This cumulative innovation is referred to as

10 jQuery: http://jquery.com/
11 Backbone.js: http://documentcloud.github.com/backbone/

http://jquery.com/
http://documentcloud.github.com/backbone/

16 context

Figure 9: The Maker’s Bill of Rights

“not reinventing the wheel” and “standing on the shoulders of giants”
(Williams, 2012, p. 138).

Free and open-source libraries are the foundation of this project,
but it does not stop there. Free software powers the majority of the
web. As of March 2012 65% of web servers run the free Apache HTTP
Server, versus 14% that run Microsoft’s closed-source server software
(Netcraft, 2012). There are several open-source languages (PHP, Ruby,
Python) that run on those servers and many open-source frameworks
(Symfony, Rails, Django) written in those languages. There are two
competitive free browser implementations that push web standards
and innovation: Gecko (Firefox) and Webkit (Safari and Chrome). Fire-
fox is “the most widely used consumer-facing piece of free software”
and Webkit has the backing of two of the largest technology compa-
nies, Apple and Google (Villa, 2010).

2.7 maker movement

The Open Hardware and Maker movements value hackability in elec-
tronics and other physical objects. The Maker’s Bill of Rights (Figure
9) from Make Magazine lists several “commandments” for makers
and hardware manufactures to consider. (Mister Jalopy et al., 2005)

2.8 plugin architecture 17

Figure 10: Open me!

Although Meemoo is a software project, it is designed to follow the
spirit of this document. The “case” of the app is easy to open and
see the wiring view. The wiring view is analogous to an electronics
schematic, and is always “included” by design of the framework. I
am planning on using a screw icon (Figure 10) for components that
you can “open” and view the source.

2.8 plugin architecture

Successful frameworks are designed to enable community members
to make and share components that extend the capabilities of the
framework. Firefox has add-ons, Facebook has apps, jQuery has plu-
gins, Processing has libraries, and Meemoo has modules.

2.8.1 jQuery

JQuery is hackable by virtue of its open-source license, but it is also
hackable because it provides mechanisms for programmers to extend
it with plugins. There is no official repository of plugins, but one
site dedicated to jQuery12 claims to have over 2000 listed in their
directory. The only JQuery plugin that I am using for Meemoo is the
official JqueryUI13, which makes it simpler to implement drag-and-
drop functionality and styled buttons.

The way the Meemoo framework accepts modules is analogous to
JQuery’s plugin architecture. Anybody can extend the framework by
making a module. Meemoo provides the framework and a communi-
cation standard for the modules.

2.8.2 Arduino

Figure 11: Lilypad Ar-
duino

Arduino was designed in 2005 to make it easier to work with elec-
tronics. Programming can be done from a Mac or PC via a standard
USB cable, where earlier microcontrollers would require expensive
programming hardware. It was designed to be affordable to start: $30
compared to $100 for earlier microcontrollers (that were less power-
ful). They released the schematics under a Creative Commons license.
Massimo Banzi, one of the creators, says that the most important im-
pact of the Arduino is “the democratization of engineering.” (Kush-
ner, 2011)

A cottage industry has sprung up around Arduino. In much the
same way that any JavaScript developer can write a plugin for JQuery,
anybody with knowledge of electronics can make modular “plug-
ins” for Arduino. Two examples are Gameduino14 and Pulse Sensor15.
Both of these projects were funded on Kickstarter and raised many

12 jQuery4u plugins directory: http://www.jquery4u.com/plugins/
13 JqueryUI: http://jqueryui.com/
14 Gameduino raised 11.5x their goal: http://kck.st/f44kHG
15 Pulse Sensor raised 6.1x their goal: http://kck.st/nae9lR

http://www.jquery4u.com/plugins/
http://jqueryui.com/
http://kck.st/f44kHG
http://kck.st/nae9lR

18 context

times their funding goal, which shows the demand and interest in the
Open Hardware community. Gameduino is a “shield” that plugs into
Arduino and contains the needed electronics and software libraries to
create vintage-style video games. Pulse Sensor is a simpler module
that contains the electronics needed to measure heart rate from a fin-
gertip or ear lobe. Plugging both of these modules into an Arduino
would take a hacker a long way towards creating a pulse-controlled
video game.

Arduino is a framework that simplifies electronic engineering. The
Arduino community makes modules that can interoperate through
that framework. Similarly, Meemoo is a framework that simplifies
web app development. People will be able to experiment with creat-
ing apps by “plugging” modules together in the framework, and they
will also be able to invent and share their own modules.

2.9 the internet

People learn by imitating and communicating with people with more
skill. Lev Vygotsky refers to the difference between what one can
do independently and what one can do with guidance the “zone of
proximal development” (ZPD). This theoretical space is where learn-
ing happens, and can be seen in different forms in work, play, and in
the classroom. (Vygotsky, 1933)

The Internet provides a social communication framework where
anybody connected can learn from others: the ultimate zone of prox-
imal development. Like most of my programming projects, Meemoo
has pushed me into the ZPD with several challenges, stretching my
capabilities as a programmer. Stack Overflow16 has been an especially
helpful community for learning from the questions and answers of
others.

2.9.1 Participatory media online

The term “Web 2.0” was defined and clarified by Tim O’Reilly in
2005. He outlined several characteristics of the companies and ser-
vices that survived or were successful after the dot-com bubble crash
of 2001. These include providing web apps as services, controlling
user-generated data, and harnessing collective intelligence. (O’Reilly,
2005)

One aspect of this trend is the rise of online services that facilitate
publishing content. This began with blogging services like LiveJour-
nal in 1999, photo sharing sites like Flickr in 2004, and video sharing
sites like Youtube in 2005. These services helped make the web more
participatory, giving any person with internet access the ability to
publish text, images, and video. These participatory platforms make
media distribution easier by abstracting away the need to learn about
web servers and HTML.

16 The author’s profile on Stack Overflow: http://stackoverflow.com/users/592125/forresto

http://stackoverflow.com/users/592125/forresto

2.9 the internet 19

(a) The Gilady Land Interactive Story (b) Play the Piano

Figure 12: Interactive video with hyperlinking

While these services enable publishing of content, they are limited
in how they can be used. The typical service presents a form with in-
put fields for title, media file, description, and tags. This information
then creates a single web page.

Some people have worked within these constraints to create interac-
tive media using hyperlinks. For example, Youtube user TimsPuppet-
Pals made a collection of videos called “The Gilady Land Interactive
Story.”17 One video is the entry into the story, and the rest of the
videos are unlisted within the Youtube sytem. In the end of each sec-
tion of the story, viewers are presented with two choices as hyperlinks
within the video (Figure 12a). Interactive stories based on hyperlink-
ing are limited to this kind of choose-your-own-adventure branching
storyline.

Another example of simple interactivity with hyperlinks is “Play
the piano”18 from Youtube user kokokaka3000. This interactive video
uses hyperlinks overlaid on each key of piano keyboard. As you click
on the links above each key, the video skips to a finger playing that
key (Figure 12b).

In order to create interactivity more complex than these two exam-
ples, some form of programming is needed, and it must be hosted
outside of the service.

An example of a project with more complex interactivity is Dar-
ren Solomon’s “In B Flat.”19 To create this project, Solomon solicited
videos of people making simple music in the same key. He then em-
bedded twenty of these videos in a grid in a web page (Figure 13).
To interact with the piece, you press play on any or all of the videos
in any order. Because of the floating nature of the music in all of the
samples, they tend to sound good together no matter how they are
mixed.

The structure of “In B Flat” – multiple videos that can be inde-
pendently controlled in one HTML page – can be considered a new
media afforded by the participatory nature of Youtube, and the ease

17 “The Gilady Land Interactive Story” http://youtu.be/spVMyoUcuR4
18 “Play the piano” http://youtu.be/oD-sSolVDiY
19 “In B Flat” http://www.inbflat.net/

http://youtu.be/spVMyoUcuR4
http://youtu.be/oD-sSolVDiY
http://www.inbflat.net/

20 context

Figure 13: In B Flat

of embedding videos. The ability to create this new media required
HTML coding knowledge.

Youtube’s embeddable player has a JavaScript Player API (Appli-
cation Programming Interface)20 which makes more complex interac-
tivity possible. Flickr’s API21 has enabled developers to create appli-
cations that can access and edit Flickr’s massive database of photos
and metadata22. These APIs increase the web’s hackability, but only
for people with coding skills.

Meemoo is a web app that uses and extends media from other Web
2.0 services, without textual coding. For example, animated GIFs cre-
ated with Meemoo can be saved directly to Imgur, an image-sharing
site. Youtube videos like “Play the piano” can be used to make a musi-
cal composition with a step sequencer. Source code for Meemoo apps
will be easy to share anywhere that text can be posted.

20 YouTube JavaScript Player API https://developers.google.com/youtube/js_api_reference
21 Flickr’s API: http://www.flickr.com/services/api/
22 An example Flickr application by the author: http://taggraph.com/

https://developers.google.com/youtube/js_api_reference
http://www.flickr.com/services/api/
http://taggraph.com/

3
P R E V I O U S W O R K A N D M O T I VAT I O N

My motivation to make this project comes from years of experiment-
ing with digital technologies. I have worked in different languages
and environments, but the ability to share my work online has al-
ways brought me back to working with web technologies. I make my
experiments into online creative tools (web apps) in order to see how
other people use my creations.

In a way, Meemoo is an abstraction of all of my earlier digital cre-
ative experiments. I plan on rebuilding some of these experiments in
Meemoo to make it easier for me (and others) to modify how they
work.

3.1 early experiences

I will start with an abridged history of my relationship with digi-
tal media. Three anecdotes will illustrate the three most important
aspects of Meemoo: creative, hackable, web.

Figure 14: Mousing Around

My first memory of interacting with a computer was
with an Apple Macintosh that my father brought home
from work in the mid-1980s. I have a strong visual mem-
ory of using the mouse to connect numbered dots to
draw a star. Once the star was complete it briefly be-
came animated. Seeing this graphic, however simple, re-
act to my input and then come alive captured my imag-
ination. We only had that computer for a few days, but
I was hooked.

In the course of researching this paper, I was able
to trace this distant memory to its source, and find a
screenshot (Figure 14). This interaction was part of an
introductory program to teach mouse skills to novices, called “Mous-
ing Around.” It ran automatically on the first boot of new Macintosh
computers. (Wichary, 2005)

Because of timing or school priorities, I was not part of the small
generation of students that was exposed to BASIC or LOGO program-
ming in school. I remained interested in computers, spending any
time that I could get my hands on them on shareware games and
paint programs. I did not get into programming until high school, in
two very different ways: Texas Instruments graphing calculators and
web programming.

My higher-level math classes used TI-8x series of graphing calcula-
tors. These have the ability to write and run programs with a BASIC-
like syntax. My first program mirrored a game played by many chil-
dren on standard calculators: the “+1 game.” This game is played
by pressing the buttons [1] [+] [1] [=], and then pressing [=] as fast as

21

22 previous work and motivation

possible. This makes the calculator into a counter, and we would have
races to see who could press [=] fastest. Pressing buttons seems to be
a common interest for children. When a system reacts to the button
press, it gives the child a sense of control. The program that I wrote
was just a few lines of code. It counted from zero, adding one and
displaying the result in an infinite loop as fast as the calculator could
go. I had automated the +1 game, taking out the button-pressing dy-
namic. It was satisfying to see the numbers flying by on the screen.
I then made a new version of the script that printed the Fibonacci
sequence in the same manner.

I then figured out how to script complicated graphic drawings on
the small monochromatic screen. I would watch with interest as the
calculator slowly rendered patterns from my scripts, one stroke at
a time. This was my first experience with programming graphics. I
never managed to make a program draw what I originally had in
mind, but this was not discouraging. The serendipitous images that
emerged from my experiments encouraged me to explore different di-
rections, and create new challenges for myself. I learned about carte-
sian geometry, algebra, and logic from these code explorations.

The scripting environment on these calculators gave them hacka-
bility. This afforded my creative exploration of math and graphical
programming in ways that Texas Instruments had not specifically de-
signed.

The availability of the Internet in my home spurred the second pro-
gramming interest. It was empowering to publish my first web site.
It was a place where I could freely express myself in many different
ways. Anybody in the world could see it, through the same window
and at the same resolution as the websites of corporations, govern-
ments, and universities. Learning how to create and post webpages
gave me a level of active participation that other media had not of-
fered.

I learned web programming by example, mostly thanks to the “view
source” command on the browser. I would take a little bit of code
from a tutorial, some code from another page’s source, and tinker
and experiment with the combination in an editor that showed both
the code and output in the same window. These web programming
experiments continued from this time and have culminated in this
thesis project.

3.2 voice synthesizer (2002), flash

This project was the most ambitious programming that I had done at
the time. The result was hacked-together voice synthesizer1 that used
looped samples of me saying all of the basic English phonemes. As
you type on the keyboard, the audio for each phoneme plays and the
image changes to my mouth making that sound (Figure 15).

1 Voice Synthesizer: http://forresto.com/oldsite/interactive/mbx/

http://forresto.com/oldsite/interactive/mbx/

3.3 megacam (2010), flash 23

Figure 15: Voice Synthesizer

I originally imagined making different voices and faces of news-
casters and politicians as plug-ins to the system. Because of lack
of time and programming skill, this never happened. It would be
easy to make such a system in Meemoo, with the plug-ins as mod-
ules containing web video and a listing of timecode triggers for each
phoneme.

3.3 megacam (2010), flash

Inspired in part by Lomo cameras, I made a series of webcam toys
in Flash2. One toy makes an arbitrary number of exposures in a grid
with different patterns (Figure 16). Another is a kaleidoscope with
changeable mirror size. Another takes slit-scan photographs.

In the early prototypes I had sliders for all of the variables. I chose
four presets for the variables to make the interface simpler, but that
also removed the possibility for me and other people to experiment
with the variables. I designed away the hackability.

If Megacam were remade as a Meemoo app, it would be possible to
keep the simplicity of the presets, but also the hackability of exposing
all variables. People could also wire in image effects to change the
kinds of photos that the app makes.

3.4 opera projection mapping (2011), quartz composer

Last year I was working on a multi-screen video projection system
for the set design of an Opera3. I found Quartz Composer modules

2 Megacam: http://sembiki.com/megacam/
3 Set design: http://crucible.mlog.taik.fi/productions/unperformed-a-performance/

http://sembiki.com/megacam/
http://crucible.mlog.taik.fi/productions/unperformed-a-performance/

24 previous work and motivation

Figure 16: Megacam

Figure 17: Connecting open-source modules in Quartz Composer

3.5 web video remixer (2011), html 25

for midi control, video playback4, and projection mapping5. I patched
them together (Figure 17) to create a system that controlled video on
four projection-mapped screens from one projector.

These modules were all shared online by their authors in the open-
source spirit. I needed to add a feature to the video player module,
and was able to do so in XCode, Apple’s proprietary development
environment.

Developing this application required searching the web for the
modules, modifying and recompiling one of the modules in a de-
velopment environment, and finally wiring the modules together in
another environment. I was able make this system with much less ef-
fort than if I had needed to write all of the software myself. However,
it was several layers of abstraction and complexity to navigate.

Meemoo will make it possible for people to not only share such
modules online, but also wire them together, experiment, and save
output instantly online. This will lower the barrier to entry of creative
coding by decreasing the number of applications needed to just one:
the web browser. It will increase collaboration potential by allowing
people to collaborate and share modifications all online.

3.5 web video remixer (2011), html

This project is the direct ancestor of Meemoo. I wanted to create a
remixer for web video, including Youtube. The interface is split be-
tween controller and player, which are in separate HTML pages to
allow the player page to be put on a separate monitor or projector.

There are several types of controllers that could be used to remix
the video. Each video has triggers that corresponded to the keys of
the keyboard. Patterns could be made by typing these trigger keys.
Then the patterns could be put in order in the sequencer. It is a com-
plex system, and I have not yet used all of the features to create a
completed composition. This is a pitfall of tool design that I will be
aware of in the future. Making these different kinds of music pattern
sequencers into reconfigurable Meemoo modules will allow for more
flexible tool design.

The controller page sends trigger signals as text to the player page
using a JavaScript function6. When I was programming this in early
2011 this mechanism was only able to send text data. Around the
middle of the year this limitation was lifted, allowing arbitrary data
like images and audio to be sent. This expansion of the capabilities of
browsers was a big inspiration to abstract this project from web video
remixer to web remixer remixer.

4 Movie Player by v002: http://v002.info/plugins-sources/v002-movie-player-beta/
5 Projection mapping / quad warping by Mehmet Akten:

http://memo.tv/archive/projection_mapping_quad_warping_with_quartz_composer_vdmx
6 About window.postMessage from Mozilla: https://developer.mozilla.org/en/DOM/window.postMessage

http://v002.info/plugins-sources/v002-movie-player-beta/
http://memo.tv/archive/projection_mapping_quad_warping_with_quartz_composer_vdmx
https://developer.mozilla.org/en/DOM/window.postMessage

26 previous work and motivation

Figure 18: Web Video Remixer

4
D E V E L O P M E N T

Meemoo is designed for hackability on all levels, from the interface
to the source code. On the highest level, people can add and remove
modules and reconfigure wires in the browser, without coding knowl-
edge. On the next level, they can write and share their own modules
with HTML, JavaScript and CSS that extend the capabilities of the
framework. On the lowest level, the entire project is free software1

under the MIT and AGPL licenses, which guarantee the right to fork
the project and change how it works at any level.

I have experience with two dataflow visual programming environ-
ments: Quartz Composer and Pure Data. The feeling of direct manip-
ulation and immediate feedback in working with these environments
appealed to me. I was able to do graphics and audio processing with
them that I could not do with any text-based coding environment.
Therefore, I was able to explore new kinds of audio/visual experi-
ments.

They are great tools for interactive installations, when you have
control over the system. However, it is impossible to use them for
creating web apps.

In the past two years browser capabilities have increased so that
audio/visual programming is now possible with web standards. I
realized that I could make my own visual programming environ-
ment with features that appealed to me from different paradigms:
modularity, hackability, instant feedback, and shareability. Making a Modularity,

hackability, instant
feedback, and
shareability!

new creative tool is just a matter of wiring some modules together. I
can write new modules in code that I am already comfortable with.
Things made with this framework are easily shared online.

I hope that Meemoo might enable somebody to explore creative
programming in the same way that my capabilities and imagination
were extended with Quartz Composer.

4.1 mozilla webfwd

Development on Meemoo’s ancestor project began in January 2011.
In October 2011 Meemoo became a Mozilla WebFWD2 fellow project.
This program was created to mentor open-source projects that sup-
port The Mozilla Foundation’s goals. One principle outlined in The
Mozilla Manifesto that aligns particularly well with this project is:
“Individuals must have the ability to shape their own experiences on
the Internet” (The Mozilla Foundation, 2008).

1 Meemoo source code is hosted on Github: https://github.com/meemoo
2 Mozilla WebFWD: https://webfwd.org/

27

https://github.com/meemoo
https://webfwd.org/

28 development

The WebFWD fellowship has given me connections to mentors in
and around Mozilla, and weekly online seminars and group calls
with all of the fellow projects. It is helpful to learn from the experi-
ences of the other people involved in open-source projects. In Decem-
ber 2011 one representative from each project met at Mozilla Head-
quarters in Mountain View, California. There we had sessions with
people involved in different levels of the Mozilla organization, from
community relations to user experience3. It was a new and helpful
experience to be around so many people that know more than me
about web technologies.

4.2 software design for hackability

In open source projects, software design that considers potential col-
laborators makes code that is more hackable. I have studied the source
code and design patterns of jQuery to make Meemoo more hackable
on the code level.

4.2.1 Common communication library for modules

Figure 19: Module

In order to design Meemoo for open modular hackabil-
ity it must be straightforward for other people to cre-
ate modules. Meemoo modules are simple web pages
that can be hosted anywhere. A module is referenced
by its web address and loaded into the framework in
an iframe. The framework surrounds the iframe with a
resizable window with inputs on the left side at the top,
and outputs on the right side on the bottom (Figure 19).

Each Meemoo module includes meemoo.js4, the
JavaScript library that handles port defining and mes-

sage routing. The inputs and outputs are then specified as in code
sample C.1 on page 59. Because every module is including the same
JavaScript library, it becomes a standard for message communication.

4.2.2 Readable, sharable app source code

The source code format for a Meemoo app is JSON (JavaScript Object
Notation) which is fairly easy to read. This “text blob” stores the web
address, position, connections, and state of all of the modules in the
graph (code sample C.2 on page 60). Because it is a small amount of
text, it is easy to share the app source code in email, forums, image
descriptions, and comments.

3 Weekly seminar and summit videos: https://webfwd.org/resources/webinars/index.html
4 About meemoo.js: https://github.com/meemoo/meemoo

https://webfwd.org/resources/webinars/index.html
https://github.com/meemoo/meemoo

4.3 usability design for hackability 29

Figure 20: Glitch app

4.3 usability design for hackability

The wiring view might be intimidating to some people at first glance.
This is a tradeoff that every design makes, balancing simplicity and
power. It is my hope that the simplicity of what is inside the modules
will encourage people to later explore the power in the framework
around the modules. This is called a layered or spiral approach to
learning, where success with one level encourages exploration in the
next (Shneiderman, 1986, p. 494).

4.3.1 Direct manipulation

One design difference between Meemoo and Quartz Composer is that
Meemoo is able to have interface elements within each module. By
way of example, an image filter module shows what it does to the im-
age every time it receives image data (Figure 20). This should make
it easier for people to understand how data flows through the appli-
cation, and what each module does.

30 development

Figure 21: Paint module

4.3.2 What is abstracted

The Meemoo framework is a level of abstraction built on several levels
of abstraction: JavaScript, browser, operating system, computer hard-
ware. I could design modules that do only one logical programmatic
function, which would lead to apps with more modules and wires to
build the functionality required.

My preference is to abstract away more logic into each module.
This makes each module a small self-contained application, like the
paint module in Figure 21. This will make is easy for somebody to
modify just one of the modules in an app. The framework dictates no
preference to how much is abstracted into each module.

4.4 graphic design

Pure Data has a quirky charm once you get over the initial steep
learning curve, but some percentage of the charm is in being the only
person on earth able to understand your own tangle of monochrome
wires. One graphic design motivation was to make something nicer
to look at and easier to understand at first glance than Pure Data.
(Figure 22)

4.5 persona and scenario-based design

I used persona profiles and scenario-based design research to think
about the potential audience for Meemoo. I used these methods as
presented by Firefox user experience designer Jennifer Morrow at the

4.5 persona and scenario-based design 31

(a) September 2011, proof-of-concept

(b) November 2011, named ports and curved wires

(c) January 2012, making wires go
to side of port

(d) January 2012, “Nova Flat” font

Figure 22: Graphic design evolution of Meemoo

32 development

Mozilla WebFWD Summit in December of 2011. I defined three per-
sona profiles to describe people at different levels of engagement with
Meemoo: the creator, the hacker, and the modder.

Creators will use Meemoo apps to make audio-visual media and
share them online. Hackers will explore how the apps work, and
rewire them to work differently. Modders will use web technologies
to make and modify modules which will be used in new kinds of
apps.

Meemoo is designed in a way that each of these levels leads to the
next, encouraging people “down the rabbit hole” towards learning
coding. I wrote a description of an imaginary person at each level
of engagement, and how they would interact with the project (see
Appendix B on page 57).

4.6 usability testing and feedback

In order to test the user experience of the framework, I did in-person
talk-aloud sessions. This methodology was also presented at the Web-
FWD summit (Morrow, 2011). I had people interact with Meemoo,
sometimes freely and sometimes with prompts or goals to accom-
plish. As they interacted with the system, I asked them to speak their
thought process aloud as much as possible. This method of testing
allowed me to “listen in” to their thought process, making it easy
to identify points of frustration. I recorded the sessions with screen-
capture software for future reference (Figure 23).

I tried to talk as little as possible, to see how people would interact
with the framework if they had found it on their own. I reminded
each person that I was not testing them, we were testing the usability
of the project. I tested some people with no programming experi-
ence, and some people of varying experience with coding and visual
programming. There were some usability issues that became quite
obvious:

• An interactive introduction to the framework would be helpful
to introduce the basic concepts and smooth the learning curve.

• I left the design of the modules plain to focus on the design
of the framework. This seemed to make some people miss the
buttons within the modules, and start by moving wires around.
I will need to make the inside of the modules the primary focus
so that people do not unwire the apps before they understand
what they do.

• Modules can specify the kind of data that ports send and accept.
I could implement something like the shaped variables from
Scratch’s codeblocks to make it more obvious which ports can
be wired together.

• Connecting wires by drag and drop was easy for all levels.

4.6 usability testing and feedback 33

Figure 23: Usability testing

(a) Port information (b) Tool-tip

Figure 24: Usability issues

• Disconnecting wires is currently done by a less direct method
that proved much less intuitive. First the port must be clicked
to show the port information popup in which there is a button
with a scissor icon to disconnect the wire (Figure 24a). It was
implemented this way as a temporary solution, and should be
replaced with a direct method, more like pulling the wire out
of the port.

• There is an indirect method to connect wires. The button for
that also got in the way. The spacing between the “click” button
and and the title of the “disconnect” section made people put
those items together. (Figure 24a)

• There is a method to input a value directly into the port from
the port information popup. The submit function is a check-
mark, which was overlooked by almost everybody. They tended
instead to click on the button labeled “click,” which has a dif-
ferent function. (Figure 24a)

• Nobody saw the tool-tip information that shows when hovering
over an element (Figure 24b). The browser takes too long to
show the tool-tip for it to be an obvious way to find information.

This testing has made some usability issues quite obvious. As I
work to design solutions for these issues I will continue this kind
testing.

5
A P P S

A large part of the development of Meemoo was creating apps to
demonstrate the framework. While creating these apps, I think of pro-
cesses that would have general purpose coded as a module. Coding
modules helps me think about features that could be added to the
framework. Adding to the module library gives me more ideas about
the kinds of apps that can be made.

I made two larger projects, an economic model and a VJ system.
These two projects are quite different from each other. They show the
breadth of possibility with this open framework.

5.1 example apps

To demonstrate the different kinds of apps that can be created with
Meemoo I have been making a collection of example apps1. So far
I have focused on simple animation tools, as this makes it easy to
engage creatively with the framework. I made a module for instant
uploading to Imgur, a popular image sharing website. The default im-
age description provides a link back to the Meemoo app that created
it. I am hoping that this will start leading people to the project, as I
have not yet been actively promoting it to any online communities.

The three examples in Figure 25 illustrate the hackable nature of
Meemoo apps. The first app is the simplest stop-motion app: from
camera straight to looping animated GIF. The second app modifies
the first by adding a paint module to allow doodling on each frame
of animation. The third app modifies the second by moving one wire,
thus making it a rotoscoping app for tracing images.

5.2 economic system modeled with meemoo

“Just two days ago I clarified my thinking about the eco-
nomic reform in Russia by programming a soft simulation
of economic competition.” (Papert, 1993, p. 37)

I was amused to read this anecdote in Seymour Papert’s “The Chil-
dren’s Machine,” as I had just done something quite similar. He used
this example to show how his intellectual life has changed because
of the availability of personal computers and their utility as thinking
tools.

I had been imagining a system for online tipping that would make
it possible for people to defer a certain percentage of a donation to

1 Example apps: http://meemoo.org/iframework/

35

http://meemoo.org/iframework/

36 apps

(a) Webcam to GIF

(b) Add a module: webcam to paint to GIF

(c) Change a wire: webcam to rotoscope tracing to GIF

Figure 25: Example apps

5.2 economic system modeled with meemoo 37

Figure 26: Economic model of deferred tipping

any number of other people. For example, a film collective makes
their work freely available on Pirate Bay. I download the film, enjoy
it, and decide to give them a tip to show my appreciation. I see a tip
widget on their website that explains that 10% of tips are deferred to
each of three actors, and 5% to a band on the soundtrack. I send them
$10, and the tip system divides and distributes the tip automatically
(Figure 26).

These networks of tips could get quite complicated. The band’s tips
could be deferred to the band members. There could be two people
that defer tips to each other (Figure 27).

In order to visualize these kinds of situations, I wrote a software
simulation2 using the Meemoo framework. To make this simulation
I wrote a Meemoo module that, when a number is input, sends the
percentages defined to each output and keeps the rest.

This application shows a nice feature of modular design. Each node
in the graph is powered by the same module. This illustrates the
object-oriented nature of the Meemoo framework, with modules that
are like individual computers in a network that communicate with
messages (Kay, 1996, p. 1).

Because this model is interactive software people can experiment
with the system and see how tips to different nodes in the system get
distributed. The model is built on Meemoo, so it is inherently hack-
able. If somebody disagrees with the model – or has a similar idea –
they can fork the project and modify how it works to illustrate their
point. This is an exciting possibility of making data visualizations and
system models open source software.

2 http://meemoo.org/blog/2012-01-24-friction-free-post-scarcity-creative-
economies/

http://meemoo.org/blog/2012-01-24-friction-free-post-scarcity-creative-economies/
http://meemoo.org/blog/2012-01-24-friction-free-post-scarcity-creative-economies/

38 apps

Figure 27: Circular tip deferral

5.3 live animation visuals for dance party

I contacted Ze Frank to ask if he would be a project advisor. He said
that he was intrigued by the project, and gave me this warning:

“Creating ’possibility spaces’ can be exciting for a number
of reasons... but also can be a false God. It can be an excuse
to never to actually grapple with whether there is value
in the output itself, whether beauty is enough, whether
people actually want what you are making...”

Partially thanks to this provocation, I decided to find a venue to per-
form with Meemoo. I was invited to VJ at Zodiak’s Side-Step dance
festival club night on February 11, 2011. I used the gig as an op-
portunity to push Meemoo development and pressure-test the live-
animation features.

For the gig I made some custom modules for creating a “world”
into which I could insert animated sprites. On the software develop-
ment side, I am happy that I decided to make two modules (Con-
troller and World, Figure 28) share the same Backbone.js data model.
Each module has its own view of the same data model, so the data
passed through the wire has the same format on both sides.

As the party started and I was still coding furiously, adding fea-
tures to the world module. Thirty minutes later the music tempo
picked up, inviting people to the dance floor, and I made myself de-
clare the coding done for the night. It was a thrill to see the first sprite
hit the dance floor: multicolored glitter swirling in water.

We used clay and construction paper (and some glitter) as the ba-
sic building blocks of the visuals (Figure 29a). I am attracted to the
textures and imperfections that come from using materials like these.
Using the taptempo module, I synced the sprites’ animation to the
beat of the music. It was fun to build these tiny animations and then
throw them onto the screens around the dance floor (Figure 29d).

Juho Santasalo documented the performance3 in high definition
video with a DSLR camera.

3 Video documentation of evening: http://youtu.be/T_tCyYGLWKM

http://youtu.be/T_tCyYGLWKM

5.3 live animation visuals for dance party 39

Figure 28: “Meemoo World” interface for controlling animation

There are a few improvements and ideas that became clear in the
course of the evening:

• Camera: I used a Sony Eyetoy webcam, which had unsatisfac-
tory color reproduction. I chose art supplies with rich colors,
but most of the color was washed out in the first step. Next
time I will do some tests to find a better camera.

• Audience participation: I planned to use a Kinect depth camera
to get silhouettes of people dancing into the world, but ran out
of time. I was imagining using different animated textures for
specified depth ranges.

• Flocking: I only had time to implement the tiled animation. The
original concept was that sprites could be individual or flocks
that would move around the screens.

• UX tweaks: Confirm dialog on every delete got annoying when
juggling around modules. It would be better if there were an
undo function, so delete could work without confirmation. A
method for un/replugging wires that is more direct would make
it quicker and easier to change the workings of the app.

• I made a hack to open the World module in a new window
to view it fullscreen on the projectors. I plan on making this a
built-in feature for any module.

Despite these limitations, I got good feedback about the visuals. Peo-
ple were interested in what I was doing, and came around to play
with the art supplies. Doing dance party visuals powered by a web
browser was a fun experiment. With some more development the
browser limitations will be less aesthetically obvious. Performing un-
der pressure was a good way to test the system.

Only once in the evening did a JavaScript warning pop up on the
dance floor. I consider that a victory, and it made me laugh out loud
when it happened.

40 apps

(a) Claymation fun with art supplies

(b) Glitter lips (c) Live wiring

(d) Two screens

Figure 29: Meemoo at Zodiak, photos by Juho Santasalo

6
F U T U R E D E V E L O P M E N T

I believe that this idea is bigger than one developer and one master’s
thesis project. I hope to find resources to continue work, and to bring
more people with varied talents into the project.

6.1 community for sharing apps

Meemoo was designed for sharing. I would like to take inspiration
from elements of Reddit, Github, and an App Store to create a com-
munity for sharing and forking Meemoo apps. It will combine the
community curation and subcommunities of Reddit, open source fork-
ing of Github, and the ease of use of an App Store. It will be relatively
easy to make such a community scalable, because the source code of
a Meemoo app is a small amount of text.

I imagine that a common point of entry to the community will be
to see an image created with a Meemoo app. From there, you will
be able to use the app that created the image. If you modify the app
you can save it to your browser’s local storage without signing in. If
you decide to save it publicly, you can sign up for the community at
that point. I would like to design the service where the first priority
is to enable creative hacking. Roping the person into signing up for
the community would be a secondary priority. (Figure 30)

An interesting possibility for a successful community will be trac-
ing how modules and apps are forked through time. Each module
can be considered the software manifestation of an idea, or meme.
Ideas are recombinations of other ideas, and apps are recombinations
of modules. That would make the source code of an app analogous
to its DNA. The tree of forking and modification would be a direct
map of the meme evolution of such a community.

Figure 30: Flow for saving an app

41

42 future development

6.1.1 Socket communication

A potential feature of a community infrastructure is socket commu-
nication. This would allow people to send data from an app on one
device to a different app on another device. For example, I could send
an image from a small camera app on my phone to a stop-motion
animation app on my laptop. This will allow devices with limited
capabilities to work in tandem with other devices.

This infrastructure could also be used to collaboratively edit Meemoo
apps. This could have interesting uses in the classroom. For example,
some students could be coding a game while other students are mak-
ing the artwork for the game, with both groups able to see and test the
results in real-time. This kind of collaboration happens in the online
Scratch community, but due to software limitations it is not real-time
(Resnick et al., 2009, p. 65).

6.2 touchscreen support

Meemoo has the potential to become a powerful tool for creative pro-
gramming on touchscreen devices. The library of modules reduces
the need to write code in a text editor.

Gestures for zooming and panning are common in touchscreen in-
teraction, and could be an intuitive way of navigating a Meemoo ap-
plication. Since Meemoo runs in the browser, zooming and panning
already work smoothly. Module dragging and wire connecting will
work soon.

Meemoo runs in browser, and in general JavaScript is slower than
native code. However, as the power of devices and browsers increase,
the kinds of apps that can be built with Meemoo will likewise in-
crease.

High-resolution touchscreens are not the ultimate interactive inter-
face. They do not make use of the range of motion and sensitivity
of the hands and fingers, reducing all tactile interaction into the feel-
ing of rubbing glass. Expanding the concept of visual programming
to haptic/tactile programming could be a very interesting research
direction.

6.3 code editing

Websites such as jsFiddle.net are designed to streamline the expe-
rience of editing and sharing web experiments and examples. The
first screen of the site presents three text areas for HTML, CSS, and
JavaScript, and a result frame that runs the web page output (Figure
31). This site is used by JavaScript library developers to demonstrate
bugs. It is also used to make demonstrations for web programming
questions and answers in forums such as StackOverflow. The imme-

http://jsfiddle.net/

6.4 twenty apps to build with meemoo 43

Figure 31: jsFiddle

diacy of editing, saving, running, and sharing code in the browser
makes this a time-saving tool for these communities.

I have been developing the first Meemoo modules using a tradi-
tional desktop code editor. I am used to switching between code ed-
itor and browser to test changes, and I probably make this mode
switch hundreds of times per day. A code editor similar to jsFid-
dle that runs within Meemoo would eliminate the need to constantly
switch applications to develop and test modules. Pressing “view source”
on a module would open an editor showing the source code of the
module. From this view, there would be options to edit the current
module (if you have access to it) or fork the module into a new one.

The open-source programming environment DesignBlocksJS (Fig-
ure 32) uses Scratch’s codeblock programming metaphor. Combining
these concepts, you could have the higher-level wiring hackability
of Meemoo, and the lower-level coding hackability of codeblocks to
edit the source of a Meemoo module. Programming modules with
codeblocks would be a good transitional step between “hacker” and
“modder” for beginning coders.

On touchscreens, coding with drag-and-drop codeblocks has the
potential to be easier and more efficient than text-based coding. Some
optimization would be required to account for the difference in mouse
pointer and finger size.

6.4 twenty apps to build with meemoo

In the spirit of Seymour Papert and Cynthia Solomon’s 1971 memo,
“Twenty Things to Do With a Computer,” I present this list of poten-
tial Meemoo apps:

1. Instructional puzzle game based on rewiring modules

2. Kaleidoscope with reconfigurable mirrors

3. Experiment with video feedback with webcam pointed at screen

44 future development

Figure 32: DesignBlocksJS

4. Collage that accepts images from many sources, like mobile
phones

5. Text-to-song generator1 with computer-synthesized voices singing
in harmony

6. Artistic visualization of data from bio-sensors recorded while
sleeping

7. Beatbox control of video mashup, where different sounds in the
microphone trigger different video clips2

8. Hourglass module that flows virtual sand to other modules
through the wires

9. Animated comic builder

10. Radiation data module to visualization and sonification mod-
ules3

11. Parallax-based 2.5D diorama builder

12. Arduino module to connect Meemoo apps to physical sensors

13. Two video players and a crossfader

1 Speech synthesizer in 1K of JavaScript by Mathieu “p01” Henri:
http://www.p01.org/releases/JS1K_Speech_Synthesizer/JS1K_Speech_Synthesizer.htm

2 Idea from “sCrAmBlEd?HaCkZ!” by Sven König: http://youtu.be/eRlhKaxcKpA
3 Idea from “Radiation Always” by Ben Dromey: https://vimeo.com/22329613

http://www.p01.org/releases/JS1K_Speech_Synthesizer/JS1K_Speech_Synthesizer.htm
http://youtu.be/eRlhKaxcKpA
https://vimeo.com/22329613

6.4 twenty apps to build with meemoo 45

14. (Animated) image macro generator

15. Side-scrolling game with placeholder image sprites that can be
replaced

16. SVG pattern generator for laser-cut papercraft 3D model

17. Processing.js sound visualizer

18. TI-83 emulator4 to draw frames of geometric animation

19. Logo emulator5 that draws patterns with variables influenced
by weather data

20. A Scratch game that draws different scenery based on location
data

The last four examples show how – in the same way that computers
and the Internet encompass all past and future media – a hackable
creative coding environment that runs in the browser can encompass
and interact with all other creative coding environments. The educa-
tional philosophies that developed these systems can be hacked, up-
dated, and incorporated into new educational goals on the radically
open web.

4 TI-83 in JavaScript by Cemetech & Kerm Martian:
http://www.cemetech.net/projects/jstified/jstified.php

5 Logo in JavaScript by Joshua Bell: http://www.calormen.com/Logo/

http://www.cemetech.net/projects/jstified/jstified.php
http://www.calormen.com/Logo/

7
C O N C L U S I O N S

The performance portion of this thesis was an enjoyable learning ex-
perience. I would like to take what I learned and build on the live
animation software developed. It would be great to collaborate with
musicians and build a story with the visuals.

The main objective for the project portion of the thesis was to “de-
sign a modular dataflow visual programming framework using web
technologies.” I think that this concept has been proven.

I will examine the secondary objectives:

• “The framework should afford non-coders the ability to modify
creative web apps by configuring wires that represent how mod-
ules communicate.” According to usability testing, the frame-
work does not yet satisfy this requirement for novices. I think
that an interactive introduction to Meemoo would help soften
its learning curve. There are are also usability issues with the
interface to address in the near future.

• “Apps created with the framework should have source code
that is easy to read and share.” This has been accomplished
by designing the source code to be a simple standard format.
The complexity of each module’s code is abstracted to its web
address, so the URL the and the state of the module are all
that is needed. The source code format of Meemoo apps is both
concise and open-ended for future expansion.

• “Web coders should be able to extend the framework by cre-
ating modules using web standards. There should be a simple
syntax to define the inputs and outputs of a module.” I am the
only person that has written Meemoo modules, so I do not yet
have any feedback from other people on this point. I designed
the library to be simple to use for people with JavaScript expe-
rience.

I have made a framework that I look forward to building on for a
long time. It is open-ended and the capabilities will increase with the
capabilities of web browsers.

I have been designing this framework for myself, but with an eye to
a potential future where others might find it valuable. I am interested
to see what other people might build with it. I hope that it encourages
other software designers to consider the hackability of their products.

47

B I B L I O G R A P H Y

Burroughs, William S. “The Cut-Up Method of Brion Gysin.” The
New Media Reader. eds. Noah Wardrip-Fruin and Nick Montfort.
MIT Press, 1961. 90–91. (Cited on page 8.)

Ellis, T. O., Heafner, J. F., and Sibley, W. L. “The GRAIL lan-
guage and operations.” (1969). URL http://www.rand.org/
pubs/research_memoranda/RM6001.html?RM-6001 (Cited
on page 13.)

Gruber, John. “Choice Nuggets From Apple’s Response to the
FCC’s Inquiry Regarding the Rejection and Removal of Google
Voice Apps From the App Store.” 2009. URL http://
daringfireball.net/2009/08/apples_fcc_response (ac-
cessed on January 10, 2012) (Cited on page 6.)

Hermes, Will. “All Rise for the National Anthem of Hip-Hop.” 2006.
URL http://www.nytimes.com/2006/10/29/arts/music/
29herm.html (accessed on February 7, 2012) (Cited on page 8.)

Himanen, Pekka. The Hacker Ethic. Random House Trade Paperbacks,
2001. (Cited on page 6.)

Jobs, Steve. “Introducing the First iPhone at Macworld.” 2007.
URL http://youtu.be/6uW-E496FXg (accessed on February
17, 2012) (Cited on page 6.)

Kay, Alan. “User Interface: A Personal View.” The Art of Human-
Computer Interface Design. ed. Brenda Laurel. Addison-Wesley, 1990.
191–207. (Cited on page 8.)

———. “The Early History of Smalltalk.” History of programming
languages II. ACM, 1996, 511–598. (Cited on pages 7, 10, 13, and 37.)

Kay, Alan and Goldberg, Adele. “Personal Dynamic Media.” The New
Media Reader. eds. Noah Wardrip-Fruin and Nick Montfort, vol. 10.
MIT Press, 1977. 393–404. (Cited on page 7.)

Kushner, David. “The Making of Arduino.” 2011. URL
http://spectrum.ieee.org/geek-life/hands-on/
the-making-of-arduino/0 (accessed on February 10, 2012)
(Cited on page 17.)

Manovich, Lev. “New Media from Borges to HTML.” The New Media
Reader. eds. Noah Wardrip-Fruin and Nick Montfort, vol. 41. MIT
Press, 2003. 13–28. (Cited on page 8.)

———. Software Takes Command. 2008. URL http://lab.
softwarestudies.com/2008/11/softbook.html (Cited on
page 8.)

49

http://www.rand.org/pubs/research_memoranda/RM6001.html?RM-6001
http://www.rand.org/pubs/research_memoranda/RM6001.html?RM-6001
http://daringfireball.net/2009/08/apples_fcc_response
http://daringfireball.net/2009/08/apples_fcc_response
http://www.nytimes.com/2006/10/29/arts/music/29herm.html
http://www.nytimes.com/2006/10/29/arts/music/29herm.html
http://youtu.be/6uW-E496FXg
http://spectrum.ieee.org/geek-life/hands-on/the-making-of-arduino/0
http://spectrum.ieee.org/geek-life/hands-on/the-making-of-arduino/0
http://lab.softwarestudies.com/2008/11/softbook.html
http://lab.softwarestudies.com/2008/11/softbook.html

50 Bibliography

Mister Jalopy, Torrone, Phillip, and Hill, Simon. “The Maker’s Bill
of Rights.” Make: Technology on your time 4 (2005): 154. URL http:
//makezine.com/04/ownyourown/ (Cited on page 16.)

Morrison, J. Paul. Flow-Based Programming: A New Approach to Appli-
cation Development. Createspace, 2010. (Cited on page 13.)

Morrow, Jennifer "Boriss". “User Experience talk at Mozilla WebFWD
Summit.” 2011. URL http://vid.ly/4o8d9l (accessed on De-
cember 16, 20) (Cited on pages 30 and 32.)

Netcraft. “March 2012 Web Server Survey.” 2012. URL
http://news.netcraft.com/archives/2012/03/05/
march-2012-web-server-survey.html (accessed on March
10, 2012) (Cited on page 16.)

O’Reilly, Tim. “What Is Web 2.0: Design Patterns and Business
Models for the Next Generation of Software.” 2005. URL http:
//oreilly.com/web2/archive/what-is-web-20.html (ac-
cessed on March 10, 2012) (Cited on page 18.)

Papert, Seymour. The Children’s Machine: Rethinking School in the Age
of the Computer. Basic Books, 1993. (Cited on pages 10 and 35.)

Papert, Seymour and Harel, Idit. “Situating Constructionism.” Con-
structionism. Ablex, 1991. 1–11. (Cited on page 9.)

Papert, Seymour and Solomon, Cynthia. “Twenty Things to Do With
a Computer.” Massachusetts Institute of Technology A. I. Laboratory
(1971). (Cited on page 43.)

Raymond, Eric S. “The Online Jargon File, version 4.4.8: Hacker.”
2003. URL http://catb.org/jargon/html/H/hacker.html
(accessed on February 10, 2012) (Cited on page 5.)

Reas, Casey and Fry, Ben. Processing: a programming handbook for visual
designers and artists. MIT Press, 2007. (Cited on page 11.)

Resig, John. “Processing.js.” 2008. (Cited on page 11.)

Resnick, Mitchel, Maloney, John, Monroy-Hernández, Andrés, Rusk,
Natalie, Eastmond, Evelyn, Brennan, Karen, Millner, Amon,
Rosenbaum, Eric, Silver, Jay, and Silverman, Brian. “Scratch:
Programming for All.” Communications of the ACM 52
(2009).11: 60–67. URL http://web.media.mit.edu/~mres/
papers/Scratch-CACM-final.pdf (Cited on pages 10 and 42.)

Sadri, Pasha, Ho, Ed, Trevor, Jonathan, Cheng, Kevin, and Raf-
fel, Daniel. “Introducing Pipes.” 2007. URL http://pipes.
yqlblog.net/2007/02/07/introducing-pipes/ (accessed
on March 7, 2012) (Cited on page 14.)

Shneiderman, Ben. “Direct Manipulation.” The New Media Reader.
eds. Noah Wardrip-Fruin and Nick Montfort, vol. 97. Mendeley
Ltd., 1986. 486–498. (Cited on page 29.)

http://makezine.com/04/ownyourown/
http://makezine.com/04/ownyourown/
http://vid.ly/4o8d9l
http://news.netcraft.com/archives/2012/03/05/march-2012-web-server-survey.html
http://news.netcraft.com/archives/2012/03/05/march-2012-web-server-survey.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://catb.org/jargon/html/H/hacker.html
http://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf
http://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf
http://pipes.yqlblog.net/2007/02/07/introducing-pipes/
http://pipes.yqlblog.net/2007/02/07/introducing-pipes/

Bibliography 51

Stallman, R. “The GNU manifesto.” 1985. URL http://www.
gnu.org/gnu/manifesto.html (accessed on February 5, 2012)
(Cited on page 15.)

The Mozilla Foundation. “The Mozilla Manifesto.” 2008. URL https:
//www.mozilla.org/about/manifesto.en.html (accessed
on January 25, 2012) (Cited on page 27.)

Victor, Bret. “Kill Math.” 2011. URL http://worrydream.com/
KillMath/ (accessed on February 10, 2012) (Cited on page 1.)

———. “Inventing on Principle.” 2012. URL http://vimeo.com/
36579366 (accessed on Feb 14, 2012) (Cited on page 8.)

Villa, Luis. “The Libre Web Application Stack.”
2010. URL http://autonomo.us/2010/08/
the-libre-web-application-stack/ (accessed on February
10, 2012) (Cited on page 16.)

Vygotsky, Lev. “Play and its role in the Mental Development of
the Child.” 1933. URL http://www.marxists.org/archive/
vygotsky/works/1933/play.htm (accessed on March 5, 2012)
(Cited on page 18.)

Wichary, Marcin. “GUI Gallery Guidebook: Guided Tour of Mac-
intosh.” 2005. URL http://www.guidebookgallery.org/
tutorials/mac1984/mousingaround (accessed on February
10, 2012) (Cited on page 21.)

Williams, Sam. Free as in Freedom: Richard Stallman’s Crusade for Free
Software. O’Reilly Media, Inc., 2012. (Cited on page 16.)

http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/gnu/manifesto.html
https://www.mozilla.org/about/manifesto.en.html
https://www.mozilla.org/about/manifesto.en.html
http://worrydream.com/KillMath/
http://worrydream.com/KillMath/
http://vimeo.com/36579366
http://vimeo.com/36579366
http://autonomo.us/2010/08/the-libre-web-application-stack/
http://autonomo.us/2010/08/the-libre-web-application-stack/
http://www.marxists.org/archive/vygotsky/works/1933/play.htm
http://www.marxists.org/archive/vygotsky/works/1933/play.htm
http://www.guidebookgallery.org/tutorials/mac1984/mousingaround
http://www.guidebookgallery.org/tutorials/mac1984/mousingaround

A P P E N D I X

53

A
T H E P I T C H

When you think of an "app," do you think of something that you can
open, hack, and change how it works? Meemoo wants to give you
this freedom. If you can’t open it, you don’t own it. Meemoo is a
framework that connects open-source modules, powered by any web
technology. The way that the data flows from module to module is
defined and visualized by colorful wires. If you can connect a video
player to a TV, you can program a Meemoo app. Meemoo is:

• a web-based creative tool maker

• a layer between polished app and source code to make it easy
for people to open, hack, bend, rewire, fork, and mod creative
web applications

• an open-source framework that connects open-source modules

• like Arduino for the web

• 100% of the web

• focused on audio/visual interactive applications, but the poten-
tial uses are limitless

55

B
P E R S O N A P R O F I L E S A N D S C E N A R I O S

These profiles were written to have an imaginary person at different
levels of engagement with the framework. They are fictional; any sim-
ilarity to any person is coincidental.

b.1 cate the creator

Cate is a nine-year-old girl who lives in the suburbs with her parents
and thirteen-year-old brother. She likes using the video camera in her
iPod to create movies starring her toys, narrating the story as she
makes it up.

Her brother uses the Internet and Facebook every evening. Some-
times he shows her funny animated GIFs and videos that his friends
link to. One of his friends linked to an animated GIF made with
LEGO bricks. In the image description was a link to the stop-motion
Meemoo app that made it.

They click on the link and see a Meemoo app with two modules
wired together. The first module shows the image from their web-
cam. She clicks “capture” and a still capture jumps to the second
module. She clicks “capture” again and the second module shows
a two-frame looping animation of the two of them shifting a little
bit back-and-forth, looped. They laugh at it, because her brother was
making a funny face in one of the frames. They understand how it
works now, so they clear the image and start over. They make an an-
imation with more frames, making funny faces and jumping around
the room. They save the resulting animated GIF image file.

Cate decides that it would be fun to make a short story with stop-
motion animation. She gathers some toys and starts to plan the story.

b.2 henry the hacker

Henry is Cate’s older brother. His communication with his friends
at school is peppered with references to Internet memes and inside
jokes. He enjoys drawing comic book heroes in his notebooks.

After playing with Meemoo with his sister, Henry notices the “Add
Module” feature. He looks at the list of modules that can be added
to the app. He adds the paint module and sees that it is a simple
version of a familiar paint application interface. He discovers how to
add a connections between modules and wires the webcam module
to the paint module. He takes a picture of one of his sister’s stuffed
animal cats, and then paints a helmet on the cat’s image. He does this
a couple more times, amused by the animated loop that he is creating.

57

58 persona profiles and scenarios

He saves the GIF to Imgur, then posts the link on a friend’s Facebook
wall.

b.3 molly the modder

Molly is a 28-year-old programmer. She has been involved in the
demo scene, writing code that pushes computers to make compli-
cated real-time graphics. She got interested in an on-line challenge
to make a demo that runs in the web browser using less than four
kilobytes of JavaScript. Her entry was a flock of polygonal birds that
moved around the screen according to a flocking algorithm.

Another entry in the contest made a simple drum synth sequencer.
Molly thought it would be cool if the her birds could change the
direction of their flight in rhythm with the drum demo. She added a
little JavaScript to both demos to make them Meemoo modules and
wired them together in the framework.

C
C O D E S A M P L E S

c.1 defining inputs and outputs (javascript)

This is an example Meemoo module with two functions: squaring
numbers and reversing text. The inputs and outputs would be de-
fined in Javascript like this:

Meemoo
.setInfo({
title: "example",
author: "forresto",
description: "this script makes a Meemoo module"

})
.addInputs({
square: {
action: function (n) {
Meemoo.send("squared", n*n);

},
type: "number"

},
reverse: {
action: function (s) {
var reversed = s.split("").reverse().join("");
Meemoo.send("reversed", reversed);

},
type: "string"

}
})
.addOutputs({
squared: {
type: "number"

},
reversed: {
type: "string"

}
}); ✆

59

60 code samples

c.2 meemoo app source code (json)

This is the source code of the app shown in Figure 1 on page 2. There
are two modules (nodes) connected with one wire (edge). A webcam
module sends an image to a painting module1.

{
"info": {
"title": "cam doodle",
"author": "forresto",
"description": "webcam to doodle"

},
"nodes": [
{
"src": "http://forresto.github.com/meemoo-

camcanvas/onionskin.html",
"x": 127, "y": 57, "z": 0, "w": 342, "h": 283,
"state": {
"quality": 75,
"width": 320,
"height": 240

},
"id": 1

},
{
"src": "http://forresto.github.com/meemoo-paint/

paint.html",
"x": 634, "y": 53, "z": 0, "w": 377, "h": 342,
"state": {
"linewidth": 2

},
"id": 2

}
],
"edges": [
{
"source": [1, "image"],
"target": [2, "image"]

}
]

} ✆

1 Try this app: http://meemoo.org/iframework/#/example/camdoodle

http://meemoo.org/iframework/#/example/camdoodle

http://meemoo.org/

Copyright © 2012 Forrest Oliphant
Some Rights Reserved

“Meemoo: Hackable Web App Framework” by Forrest Oliphant is licensed under a
Creative Commons Attribution-NonCommercial 3.0 License.

http://creativecommons.org/licenses/by-nc/3.0/

http://meemoo.org/
http://creativecommons.org/licenses/by-nc/3.0/

	1 Introduction
	2 Context
	2.1 Hackers and Hackability
	2.1.1 iOS

	2.2 Metamedium
	2.3 Tools
	2.3.1 Direct manipulation

	2.4 Programming for children (and other artists)
	2.4.1 Logo (1967)
	2.4.2 Smalltalk (1972)
	2.4.3 Scratch (2006)
	2.4.4 Processing (2001)

	2.5 Visual programming languages
	2.5.1 GRAIL (1969)
	2.5.2 Audio/visual environments
	2.5.3 On the web

	2.6 Free Software Movement
	2.7 Maker Movement
	2.8 Plugin architecture
	2.8.1 jQuery
	2.8.2 Arduino

	2.9 The Internet
	2.9.1 Participatory media online

	3 Previous work and motivation
	3.1 Early experiences
	3.2 Voice Synthesizer (2002), Flash
	3.3 Megacam (2010), Flash
	3.4 Opera projection mapping (2011), Quartz Composer
	3.5 Web Video Remixer (2011), HTML

	4 Development
	4.1 Mozilla WebFWD
	4.2 Software design for hackability
	4.2.1 Common communication library for modules
	4.2.2 Readable, sharable app source code

	4.3 Usability design for hackability
	4.3.1 Direct manipulation
	4.3.2 What is abstracted

	4.4 Graphic design
	4.5 Persona and scenario-based design
	4.6 Usability testing and feedback

	5 Apps
	5.1 Example apps
	5.2 Economic system modeled with Meemoo
	5.3 Live animation visuals for dance party

	6 Future Development
	6.1 Community for sharing apps
	6.1.1 Socket communication

	6.2 Touchscreen support
	6.3 Code editing
	6.4 Twenty Apps to Build With Meemoo

	7 Conclusions
	Bibliography
	Appendix
	A The Pitch
	B Persona Profiles and Scenarios
	B.1 Cate the Creator
	B.2 Henry the Hacker
	B.3 Molly the Modder

	C Code Samples
	C.1 Defining Inputs and Outputs (JavaScript)
	C.2 Meemoo App Source Code (JSON)

